Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In recent years, there has been a growing consensus among researchers regarding the dual nature of code clones. While some instances of code are valuable for reuse or extraction as components, the utilization of specific code segments can pose significant maintenance challenges for developers. Consequently, the judicious management of code clones has emerged as a pivotal solution to address these issues. Nevertheless, it remains critical to ascertain the number of code clones within a project, and identify components where code clones are more concentrated. In this paper, we introduce three novel metrics, namely Clone Distribution, Clone Density, and Clone Entropy (the dispersion of code clone within a project), for the quantification and characterization of code clones. We have formulated associated mathematical expressions to precisely represent these code clone metrics. We collected a dataset covering three different domains of Java projects, formulated research questions for the proposed three metrics, conducted a large-scale empirical study, and provided detailed numerical statistics. Furthermore, we have introduced a novel clone visualization approach, which effectively portrays Clone Distribution and Clone Density. Developers can leverage this approach to efficiently identify target clones. By reviewing clone code concerning its distribution, we have identified nine distinct code clone patterns and summarized specific clone management strategies that have the potential to enhance the efficiency of clone management practices. Our experiments demonstrate that the proposed code clone metrics provide valuable insights into the nature of code clones, and the visualization approach assists developers in inspecting and summarizing clone code patterns.more » « less
-
Tuning broad emission in 2D Pb–Sn halide perovskites (HPs) is essential for advancing optoelectronic applications, particularly for color‐tunable and white‐light‐emitting devices. This broad emission is linked to structural factors, such as defects and phase segregation of the Pb component within the Pb–Sn system, which are strongly influenced by the molecular structure and chemical properties of spacer cations. Atomic tuning of the spacers via halogenation opens up a new way to fine‐tune the molecular properties, enabling further augmentations of HP functionalities. Nevertheless, the distinct broad emission's sensitivity to spacer chemistry remains underexplored. Here, halogenation's influence is systematically investigated on 2D HP emission characteristics using a high‐throughput workflow. These findings reveal that the F‐containing phenethylammonium (4F‐PEA) spacer narrows the broadband PL, whereas Cl broadens it. Through a correlative study, it is found that 4F‐PEA reduces not only the local phase segregation but also the defect levels and microstrains in 2D HPs. This is likely attributed to the manifestation of less lattice distortion via stronger surface coordination of the dipole‐augmented 4F‐PEA. These results highlight halogenation as a key factor in modulating phase segregation and defect density in 2D Pb–Sn HPs, offering a promising pathway to tune the emission for enhanced optoelectronic performance.more » « less
-
Abstract Unlike single‐component 2D metal halide perovskites (MHPs) exhibiting sharp excitonic photoluminescence (PL), a broadband PL emerges in mixed Pb‐Sn 2D lattices. Two physical models –self‐trapped exciton and defect‐induced Stokes‐shift – are proposed to explain this unconventional phenomenon. However, the explanations provide limited rationalizations without consideration of the formidable compositional space, and thus, the fundamental origin of broadband PL remains elusive. Herein, the high‐throughput automated experimental workflow is established to systematically explore the broadband PL in mixed Pb‐Sn 2D MHPs, employing PEA (Phenethylammonium) as a model cation known to work as a rigid organic spacer. Spectrally, the broadband PL becomes further broadened with rapid PEA2PbI4phase segregation with increasing Pb concentrations during early‐stage crystallization. Counterintuitively, MHPs with high Pb concentrations exhibit prolonged PL lifetimes. Hyperspectral microscopy identifies substantial PEA2PbI4phase segregation in those films, hypothesizing that the establishment of charge transfer excitons by the phase segregation upon crystallization at high‐Pb compositions results in distinctive PL properties. These results indicate that two independent mechanisms—defect‐induced Stoke‐shifts and the establishment of charge transfer excitons by phase segregation—coexist which significantly correlates with the Pb:Sn ratio, thereby simultaneously contributing to the broadband PL emission in 2D mixed Pb‐Sn HPs.more » « less
An official website of the United States government

Full Text Available